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Abstract. We study the effect of repulsion for self-avoiding walks and random walks from 
excluded sets. We show, in particular, that the mean displacement away from an excluded 
infinite needle of self-avoiding random walks in three dimensions has to diverge along the 
privileged axis as Nr, where N is the number of Steps and D is a sub-leading critical 
exponent for the two-point function. This exponent has been determined by using a 
high-precisianMonte Carlosimulation ( ~ = 0 . 3 7 0 ~ 0 . 0 1 1 ) .  Its knowledgeis used toimprove 
the measure of universal quantities, like the exponent Y ( Y = 0.5867*0.0025, in agreement 
with the E-expansion estimate and with experimental data) and amplitude ratios. We verify 
also that for simple random walks the excluded needle introduces instead logarithmic 
violations to scaling. 

1. Introduction 

In  this paper we will investigate the repulsion of self-avoiding walks P SAW^) from an 
excluded half-line. This work is motivated by the intriguing result by Considine and 
Redner [ I ]  who found that, in three dimensions, the mean displacement of a SAW 

along the axis away from the excluded set diverges with the number of steps N as 
N-,  with the new critical exponent ~ ~ 0 . 3 5 .  However, this result was obtained by 
using enumeration data with N S  17 and the observed behaviour may only be a 
short-series effect. Indeed, in the corresponding random-walk model they found that 
the asymptotic behaviour is reached only for very large N because of strong corrections 
to scaling. 

In two dimensions, the same model has been fully clarified [Z] by means of 
conformal techniques (see [3] for an introduction). No new exponent appears as 

Less understood is the model in which the excluded set reduces to a point. The 
effect of repulsion, when this point is chosen to be a nearest-neighbour of the origin 
of the SAW, has also been studied as persistency of the walk in the direction of the first 
step, From the available data, the mean displacement in the direction of the first step 

( T = y = I  4. 
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is interpreted to scale either as a power of N with a small exponent [4], or as a log N 
[51, in analogy to what is known exactly for the simple random walk [6]t. 

In section 2 we shall clarify how these different behaviours can be understood by 
looking at the relevance of the perturbation which the excluded set introduces, at the 
fixed point which governs the scaling behaviour of the model without this constraint. 
In particular, we shall see that the exponent U is simply related to the sub-leading 
correction to the two-point correlation function of the corresponding continuum limit 
which emerges from the scaling. It will also follow that in two-dimensions with an 
excluded point a power-law behaviour (and not a logarithmicgrowth) must be expected 
for SAWS. 

A high-precision Monte Carlo test has confirmed our expectations. In section 3 we 
present the results which lead to the determination of U, while in section 4 we will use 
the relation between U and the sub-leading corrections to the two-point function to 
better extrapolate the behaviour of universal quantities. For example, the exponent v 
turns out to be lower than previously observed, but in agreement with the &-expansion 
result and with experimental data from polymers. 

As an extra test of our ideas, we also simulated the simple random walk in the 
presence of an excluded needle in three dimensions, because in this case we believe 
that the perturbation due to the excluded needle is not irrelevant but marginal. Indeed, 
the presence of logarithmic corrections to scaling at the fixed point is confirmed in 
section 5 .  

2. Excluded set and corrections to scaling 

In the terminology of the field-theoretic approach to crit,ical phenomena, the criticality 
of the SAW is governed by the fixed point of the Gjnj u-modei anaiyticaiiy continued 
to n = O  [ll-141. The presence of an excluded region corresponds to a perturbation 
due to the introduction of an operator which creates vacancies in the O(n) model. Let 
us suppose for concreteness that the excluded region 9 is cylindrically symmetric 
about some axis (as is the case for an excluded point or half-line, and is true more 
generally for an excluded wedge or cone); then it is convenient to use polar coordinates 
( r ,  6 j  orienied aiong ihis axis. Xow i-onsidei iiie i-orrehiion fuilciioii beiweeii a spin 
at the origin and one in the bulk at location ( r ,  e); this function will have the scaling 
form 

Here p is the inverse temperature, and [ - ( p , - p ) - "  is the correlation length in the 
uzpe::*.;b,~d : h r y ;  ?he c:itica! inverse temperatm f iC  sfid the exponent 9 zre no! 
modified by the presence of the vacancies$. However, the behaviour of the other 
quantities depends on whether the perturbation is relevant or irrelevant [16]: 

( i )  If the perturbation is relevant, then the leading spin-spin decay exponent qr 
differs from its bulk value q (and as a consequence the leading susceptibility exponent 
y3 = ( 2 - q r ) v  differs from its bulk value y = ( 2 - q ) v ) .  Likewise, the leading scaling 

t More recent work concerning persistency properties of trails and silhouettes, which belong to the same 
universality class of SAW, can be found in [7] and [SI, respectively in two and three dimensions. See also 
[9] and [IO]. where persistency is used to locale the lransitian temperatures. 
$ Unless the excluded region S is so big that the remaining Set Z"\% is effectively a space of lower 
dimensianalily. See [ I S ]  for how thin a set has to be before !A= IJP, changes. 
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function Fs differs from its bulk value F; in particular, it has a non-trivial angular 
dependence [17]. 

(ii) If the perturbation is irreleuant, then vm and Fe are unchanged from their bulk 
values q and F. In particular, the leading scaling function F has no angular dependence. 
The effects of the perturbation show up  only in the non-leading exponents and scaling 
functions ?&, . . .and F&, . . . , which can differ from their bulk values. 

In either case, vvp and F8 (and indeed all of the exponents qh,. . . and scaling 
functions F&, . . .except for an unknown amplitude) are universal in the sense that 
they depend only on the global properties of the excluded region 93, such as its 
dimensionality and its opening angle. 

More subtle is the case in which the perturbation is marginal: 7- is equal to the 
bulk value but the universal scaling behaviour may be broken by logarithmic violations 
and observables associated with the perturbation can show a complete breaking of 
universality, in the sense that they can have critical exponent with an explicit depen- 
dence from the coupling of the perturbation [IS, 191. 

Let us now discuss the relevance of the perturbation introduced by an excluded 
region % for SAWS and random walks. Let us remember that on pure dimensional 
grounds it is easy to establish that the probability of intersection oftwo random objects, 
extending at infinity respectively in d' and d" dimensions, in a lattice of dimension d, 
is not null only if ~ 

d '+  d'r> d. (2) 

Let d" be the dimension of the chosen region 93 on the lattice. 
First let us consider the case of a random walk. It is well known that its Hausdorfl 

dimension is two. This means that a random walk may intersect the region Ye outside 
any bounded volume if 

d s d"+2.  ( 3 )  

For strict inequality we expect that the operator which creates the vacancies in the 
region % to be relevant at the fixed point which governs the criticality of the walks. 

d" = 0. Then we expect marginality in d = 2 (which shows up in logarithmic corrections 
[6]) and irrelevant corrections in d = 3 (which implies the appearance o f  a persistence 
length as  in [I]). If 9 is a half-line, d"= 1, thus in two dimensions there is a change 
in the universality class (which shows up in a variation of the value of 9, while U stays 
unaltered), marginality would occur in d = 3 and irrelevant corrections in d 2 4, in 
close agreement with Considine and Redner's calculations for d - 2 ,  3 [l]. 

Margina!ity shoc!d corr~spond to !he case of equa!i!y: Le! $9 he a single point, i ,e, 

Now, the Hausdorfl dimension o f  a SAW is d '= l / u ,  where 

v = l  for d = 1 

" = I  4 for d = 2  

Y = 0.6 for d = 3  (4) 

v = $(log) for d = 4  

&,=? 2 for d > 4. 

(The Flory formula v = = 3 / ( d + 2 )  for d s 4  is an excellent approximation, though not 
exact in general.) Therefore, we expect an excluded point to be a relevant perturbation 
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if d s 11 v ;  this occurs only in dimension d = 1.  Likewise, we expect an excluded 
half-line or line to be a relevant perturbation if d S 11 v + 1; this occurs only in dimension 
d = 1, 2, indeed in the interesting case d = 2  there appears an explicit &dependence 
of Fq [17], from which it follows that all quantities, even and odd, have the same 
behaviour given by (11) [2]. (If the Flory formula were exact, these perturbations 
would be relevant for d S l  and d S 2 ,  respectively.) Above these dimensions the 
perturbation is irrelevant and thus we expect the leading exponents to remain equal 
to their bulk value. 

Now let z = p cos 0 be the end-point coordinate of the SAW which feels the asym- 
metry due to the presence of the excluded region, and r = p sin 0, i.e. the end-point 
coordinate of the SAW, respectively longitudinal and transversal with respect to the 
exclusion axis. The average value 

( r k z h ) ( p )  =x ( r k z h ) N C N p N  (5) 
N 

where C,., is the total number of SAWS of N steps beginning at the origin and ending 
anywhere, is given by 

By using the form (1) for the two-point function, we obtain 

( r ’ z h ) ( p )  = A,(h ,  k)c’ ’h(p)+A2(h,  k)c’+h+n--n’ ( P I +  . . .  (7) 
where A,(h,  k )  and A,(h, k )  are moments of the scaling functions F* and Fk ,  respec- 
tively: 

Since 6-  N ” ,  we find 

( r k z h ) N  - A , ( h ,  k)N‘h+’””+A2(hr k)N““-”’’”+ _ . . .  (10) 

Now, if the perturbation is releuant, then F8 has non-trivial angular dependence, and 
presumably all of the moments A,(h ,  k) are non-zero (barring miraculous cancella- 
tions). In this case 

( r ‘ z h ) N  - “ h t k l v  (11) 

for all h, k On the other hand, if the perturbation is irreleuant, then F has no angular 
dependence, so A,(h ,  k )  = O  for h odd; but presumably all of the moments Adh,  k )  
are non-zero (again barring miraculous cancellations). Hence we have 

for h even 
for h odd 

where U = (q - q’+ 1)v. This second case, as we have shown, corresponds to SAWS in 
two dimensions with an excluded point and in three dimensions with an excluded 
needle. Thus in both cases we expect (2) to scale as N ”  with U Z U and no logarithms, 
in contrast to what happens for simple random walks. 
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Another effect of the sub-leading correction induced by the excluded point in two 
dimensions and by the half-line in three dimensions is the appearance of a non- 
rotational invariant sub-leading correction to even quantities with exponent A = 
(q'+ 7 )  v = v - U. For instance, by considering in the three-dimensional case the end-to- 
end distance, we will have 

( z ' ) ~   AN^" 1 +?+. , . ( ,". 

with B # B', where the dots include rotational-symmetric corrections (possibly with a 
lower exponent) and non-rotational invariant terms with a larger exponent. The 
subscript n shows that we refer to the problem with an excluded needle. It follows 
that U =  U - A n  can be also computed measuring ( r 2 ) N / ( ~ 2 ) N - 2  which scales like 
N-A.= ~ - ( v + " )  . This will provide an important consistency check for our reasoning. 

For the three-dimensional case the relation between this exponent An and the 
sub-leading corrections in the bulk is not clear and is presently under investigation 
1201. The situation is simpler in two dimensions with an excluded point. Here (R: )  in 
the bulk is equal to ( z 2 ) + ( r 2 )  computed with an excluded point. Indeed, the exclusion 
of a point that is a nearest-neighbour to the origin of the SAW is equivalent to fix the 
first link of the walk, but quantities like (R:) are insensitive to the direction of the first 
step. I t  follows that the exponent A, which occurs in presence of an excluded point 
will appear as a sub-leading exponent also for quntities in the bulk, as long as B + B' # 0. 

If this is the case the value obtained by Grassberger [4] for U i n  ( z ) = a N r ,  i.e. 
0=0.063*0.010, could be interpreted in terms of the irrelevant operators which have 
been recently found by Saleur [21] through an investigation of the transfer matrix. He 
found that the thermal operators of the theory have dimensions X ,  = 2h,,,+, where h,,, 
is given by the Kac formula [22,23] with central charge c = 0: 

( 2 r - 3 ~ ) ~ -  1 
24 . h,,, = 

The lowest operator has dimension X, = f and corresponds to the energy operator, 
while the second has dimension X2=%, thus giving rise to a sub-leading exponent 
A , = ( X 2 - 2 ) v = % .  This would imply U =  v-A,=&=O.O625, ingood agreement with 
Grassberger's value. Thus, Grassberger's result seems to confirm the presence of a term 
with A = G  for bulk quantities and indeed there is some numerical evidence that this 
is the case [24-271. This possibility is actually under investigation [28]. 

3. Detection of the sub-leading corrections 

In order to test the ideas presented in the previous section we have studied the 
three-dimensional case with an excluded needle by means of a high-precision Monte 
Carlo simulation on a cubic lattice using very long SAWS ( 1 0 0 s  N C  16 000). We have 
performed our simulations on  an IBM 4381 using a total of roughly 1500 hours of 
CPU time for  SAW^ and 100 for the simulation of simple random walks. 

By far the most efficient algorithm for simulating SAWS with free endpoints and 
fixed length N is the pivot algorithm, which is able to produce an effectively independent 
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Table I .  Aurocorrclarion rimes for different observables and the percentage of awepied 
pivot moves for  SAW^ in d = 3. The error ranges correspond to the 95% confidence interval 
(two standard deviations). 

N T,",,: Tin,.;' T#",,:A 'i",.Ri r 
IO0 6.1010.10 4.41 +0.06 5.1010.08 15.510.4 0.582 
150 6.6010.12 4.64+0.01 5.3810.08 17.5 10.5 0.557 
250 7.17 1 0.09 4.9510.05 5.85+0.07 20.1 10.4 0.527 
500 1.9310.11 5.3310.06 6.3810.08 23.0 10.5 0.488 

1 000 8.4210.17 5.93 10.10 6.65 i 0 . 1 2  26.7 + 1.0 0.453 
2 aao 9.s9*o.zi 6.60+-0.12 ?.79+0.15 29.911.1 0.419 
4 000 9.98+0.30 1.07 +0.18 8.0910.22 32.2zt1.7 0.386 

16000 11.36+1.11 7.9810.80 9.39+0.88 35.6 + 5.3 0.319 

Table 2. The results of our runs in d = 3  for SAWS. The emor ranges are 95% confidence 
intervals (two standard deviarionsl. 

N 

LOO 150 250 500 

5.2 x IO' 

1.000+0.028 1.165 1 0.038 
87.47 i 0.30 141.7410.49 
233.717.6 443116  
(2051 + 14) X IO' 

183.4510.41 295.71 iO.80 
133.4 i5 .5 258+12 
42.24610.084 68.38 * 0.15 
270.91 10.65 437 .5 i  1.1 

Data m available 

5.2 x IO6 

(5400138) X IO' 
(842135)x IO' ( m +  12) x 103 

1 x IO' 

1.401 i 0 . 0 3 8  
260.3610.68 
986131  
(1830+ l 0 ) X  IO' 
( 1 0 7 7 1 4 3 ) ~  10' 
541.1i1.1 
5 5 9 i 2 2  
i25.68*O.ii 
801.511.5 
385.18 10.13 

I x IO' 

1.156 + 0.061 
593.1 1 1.6 

(9517+53) X IO2 
(685 +34) X IO' 
1224.312.7 
1567+18 

1811.5i3.6 
814.611.8 

(278 + 11) x IO' 

^ ^ _ ^ ^  ~ ~- 
L6,.Y"*".3' 

N 

(0)N 1000 2000 4000 16 000 

I x io' 

2.98+0.12 
3031.91 7.6 
( 2 4 8 1  12) X 10' 
(2499113)XIO' 
(3 lSX  10) X IO" 

(1361 i 8 4 ) X  IO '  
1466.3 1 2.6 
9252117 
4463.818.7 

,",. , .* 
O L L U l T l '  

1 x 10' 

3.93 10.22 
6884120 
( 1 3 4 t 4 6 ) x  IO2 
( 1 2 9 0 6 1 7 8 ) ~  IO' 
(214+17) Y IO' 

(392+32) x 10' 
3323.2 + 6.7 
20 951 * 46 
10102*22 

, I n < ,  , - 3  
1 ..U" I I', 

7 . S X 1 0 '  

6.5410.64 
(3526113)XlO'  
(618169)XlO'  
(3385+26)X IO6 
(93+13)X1OY 
, - . A , L , . > "  In, 
( I l * , i r r , . . r "  

(350 1 48) X IO3 
16980144  
( l 0 6 6 9 1 3 0 ) X  IO' 
(5 143 i 15) x I O '  
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configuration in a computer time of order N [29]. This algorithm can also be used in 
our case, in the presence of an excluded line: it is indeed very simple to see that the 
ergodicity proof given in 1291 can be easily extended to this case. In tables 1-3 we 
report the raw data from our runs. The integrated autocorrection times have been 
computed using a self-consistent rectangular window of width 15~,., (see appendix C 
of [291 for details), and f represents the percentage of accepted pivot moves. Here R i  
stands for the radius of gyration. 

From the data of table 1 we can determine the dynamic behaviour of the algorithm. 
The dynamic exponents are obtained by fitting the data against K N ” (  1 + H/ N’) for 
various, $xed, values of H and A and then applying the flatness criterion advocated 
in sections 4.2 and 5.3 of [30]. We find 

pz =0.123*0.021 iO.006 (16) 

pzz  = 0.142i0.020*0.005 

p,~=0.128*0.024*0.006 

p R ; =  0.144i0.035i0.011 

p,= -0.1126i0.0017i 0.0003 

where the first error is the systematic error due to unincluded corrections to scaling 
(95% subjective confidence limit as defined in footnote 17 of [30]) and the second 
error is the statistical error (95% confidence interval). The critical exponents agree 
with those found by Madras and Sokal for SAWS in the bulk, thus showing that the 
introduction of the excluded half-line does not change the dynamic universality class 
of the algorithm. 

From the data of tables 2 and 3 we obtain the exponents and the amplitudes 
reported in table 4 ((0) = K,N”O) by performing a least-squares fit. From these data 
it is immediately seen that quantities like ( z k r h ) N  with k odd and h even scale like 
N“t“+h-l’” where u=O.37. Specifically we have (we divide by appropriate powers of 
z in order to eliminate the v-dependence of the exponents) 

u((~))=0.367*0.011 (21) 

u( ( z ’ ) / ( z* ) )  = 0.372i0.013 (22) 

v((z5)/(z4)) =0.377+0.017 (23) 

v ( ( z r 2 ) / ( r 2 ) )  = 0.362i0.024 (24) 

Table 3. Values of C ( F * , ~ )  where FA.s = A / ( A ) -  B / ( B ) .  They are needed for the calcula- 
tion of the error of the ratio (A ) / (B ) ,  as shown later in the text. 

~~ ~~ ~ ~ ~ ~~ - 
N 

v ( F ) ,  100 150 250 500 1000 2000 4000 16 000 

FR;,Rt 0,000 63 0.00065 0.00049 0.000 53 0.000 78 0.000 50 0.000 58 0.000 74 
FR:,.: Not available 0.000 52 0.000 55 0.000 85 0.000 53 0.000 62 0.000 79 
F r 2 .- .: 0.001 74 0.001 79 0.001 36 0.001 40 0.00204 0.001 33 0.001 5 1  0.001 91 
F,,  ;: 0.016 0.018 0.015 0.020 0.031 0.021 0.03 I 0.055 
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Table 4. Critical exponents and amplitudes with error ranges (two standard deviations) 
for  SAW^ as recovered from a least-squares fit. The sum of weighted square deviations i s  
also reponed (the number of degrees of freedom is  six, except for Ri where it is four). 

( 2 )  0.367 0.01 1 
(2’)  1.555 0.012 

( 2 7  2.747 0.015 
(z5)/(z4) 0.377 0.017 
(zr’) 1.541 0.015 

(Z3)/(Z? 0.372 0.013 

(zr*)/(r2) 0.362 0.024 
(r2) 1.175 2 0.000 6 
( z 2 )  1.181 7 0.000 7 
( 2 7  2.366 7 0.001 4 
(R:) 1.177 4 0.000 5 

( R 2  1.177 0 0.000 7 
(R:) 1.181 7 0.000 6 

(r2)/(zz)-2 -0.226 0.029 

0.184 
0.182 
0.481 
0.273 
0.725 
0.112 
0.139 
0.821 3 
0.381 4 
0.385 2 
1.1202 
0.184 I 
0.581 0 
0.271 

0.012 
0.013 
0.036 
0.026 
0.077 
0.010 
0.018 
0.003 2 
0.001 x 
0.003 9 
0.004 3 
0.000 6 
0.001 5 
0.048 

3.0 
4.3 
4.3 
9.2 
6.8 
3.0 
3.4 

28.1 
48.7 
69.6 
47.2 
94.4 
14.2 
4.5 

giving the final estimate 

U = 0.37010.011 (25)  
where the error range corresponds to the 95% confidence interval. 

These results are in complete agreement with those obtained by Considine and 
Redner and thus we can confirm the presence of this sub-leading exponent. 

As expected the even quantities (z’), ( r 2 )  and ( R i )  scale as usual as N2”, with U-:. 
The error ranges in table 4 are, however, too optimistic. The high value of x1 and the 
inconsistency between the values of U obtained from different observables (see for 
instance the estimates from (2’) and ( r 2 )  in table 4) show the necessity of the inclusion 
of correction terms to simple scaling. Moreover, fitting the data discarding the low-N 
values shows a systematic decrease of the estimate, and this is a clear sign of the 
presence of sizeable sub-leading corrections. We will discuss this problem in the 
following section. 

We have also measured the sub-leading exponent associated with the breaking of 
the rotational invariance, analysing the behaviour of the quantity ( r 2 ) / ( z 2 ) - 2  which 
scales as N-’”. A least-squares fit gives 

(26 )  

in good agreement with our more refined prediction A. = v - U = 0.217 * 0.013, all error 
bars being 95% confidence intervals. 

A. = 0.226 1 0.029 

4. Universal behaviour 

As we have seen in the previous section a reliable determination of U requires the 
introduction of sub-leading corrections. Usually, keeping account of these terms is 
difficult because the sub-leading exponent is not known and it should be included as 
an extra parameter in the fits. Here, however, the situation is different; indeed, we 
know that a term l /NA with A =A.  = 0.22 is certainly present. We do not know if this 
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is really the lowest sub-leading correction; indeed, rotational-invariant terms with lower 
A cannot a priori be excluded. However, the low value of An makes us confident that 
this is indeed the lowest correction. 

We will thus suppose that the first sub-leading correction to the two-point function 
is non-rotational invariant, fitting our data as 

with A = 0.22, using the method described in [30]. In tables 5 and 6 we present the 
results for the end-to-end distance R: and the radius of gyration R:, by including each 
time only the data with N 2 Nmi,. Using the flatness criterion we get 

~ ( ( 1 ’ ) )  =0.5873*0.0037+0.0004 (28) 

v ( ( z 2 ) )  = 0.5890+0.0042*0.0004 (29) 

v ( ( z* ) )  = 0.5875+0.0030+0.0005 (30) 

v((R:)) = 0.5870+0.0020*0.0003 (31) 

v ( (R i ) )  =0.5856+0.0021+0.0003 (32) 

v((R,?J) = 0.5865 +0.0030+0.0004 (33) 

where the error ranges are respectively the systematic and the statistical ones and 
correspond to 95% connfidence intervals. Here Rk is the average distance of a monomer 
from an end point of the walk. 

In applying the flatness criterion we have discarded the data at N = 100 and 150. 
Inclusion of these data produces estimates of U strongly varying from one observable 
to the other and not compatible among them. Indeed, the flatness regions include 

Table 5. Least-square estimator Y as a function of the parameter H and of the cut N,;,, 
derived from the data a l  the square end-to-end distance. The statistical error A ”  is a 95% 
confidence interval and refers to all the data belonging to the same column. Below each 
value we report the xi of the corresponding fit (x? where n is the number of degrees a l  
freedom). Values in bold lace indicate the flatness region. 

“in 

H IO0 150 250 500 1000 2000 

0.04 0.589 68 0.589 31 0.588 92 0.588 44 0.588 52 0.58861 
x:=61.3 x:=35.6 x:=13.3 x:=3.4 x:=3.3 x:=3.2 

0.00 0.588 68 0.588 36 0.58802 0.581 61 0.581 19 0.58793 
xi=47.2 x:=28.0 x:= 10.4 x:=3.6 x:=3.l x:=2.8 

-0.04 0.587 66 0.587 40 0.587 09 0.586 78 0.587 05 0.581 13 
x:=3S.l x:=21.7 x:=8.5 x:=4.3 x:=3.1 x:=2.5 

-0.08 0.58662 0.58641 0.586 16 0.58593 0.58630 0.58652 
x:=25.3 x:=16.8 x:=7.5 x:=5.3 x:=3.0 x:=2.1 

-0.12 0.585 56 0.585 40 0.585 20 0.585 06 0.585 54 0.585 81 
~ 2 = 1 8 . 2  x:=13.7 x:=7.6 x:=6.8 x:=3.l x:=1.8 

-0.16 0,584 47 0.584 38 0.584 23 0.584 18 0.58477 0.585 09 
x:=14.0 x:=12.3 x:=9.0 x:=8.9 x:=3.4 x;=l.5 

A” 0,000 27 0,000 30 0.000 35 0.000 46 0.000 68 0.000 82 
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Table 6. Results for the radius of gyration. See the caption of table 5 for the explanation 
of  the symbols. 

"," 

H IO0 150 250 500 1000 2000 

0.00 0.590 84 0.59045 0.589 97 0.589 35 0.58905 0.588 95 
xi=94.4 x:=61.4 x:=22.6 x:=3.9 x:=2.2 x:=2.0 

-0.10 0.588 23 0.587 98 0.587 62 0.587 23 0.587 19 0.587 I9 
x:=43.3 x:=30.3 x:=9.0 x:=1.3 x i=I .3  x:=l.3 

-0.14 0.58714 0.58696 0.58665 0.58635 0.58642 058647 
x:=28.2 x:=21.0 x:=5.6 x := l . I  x:=l.O x:=l.O 

-'0.18 0.58603 0.585 92 0.58567 0.58546 0.5856J 0.58574 
x:=16.8 x:=13.8 x:=3.5 x:=l.5 x:=l.O x:=0.8 

-0.22 0.58490 0.58485 0.58466 0.58456 0.58485 0.58500 
x:=9.6 x:=9.1 x:=3.l x:=2.6 x:=l.O X:=O.S 

-0.26 0.583 74 0.583 76 0.583 63 0.583 64 0.58405 0.584 25 
x:=7.2 x:=7.l  x:=4.3 x:=4.3 x:=1.2 x:=0.4 

~ ~~ 

A" 0.000 24 0.000 27 0.000 32 0.000 43 0.000 63 0.000 76 

points got from fits with relative low goodness (high x'). n u s ,  probably at N = 100 
and 150 additional corrections to scaling are still sizeable?: we expect corrections with 
exponents N = 2A = 0.4, N = 3A and so on, which can still be relevant at these low 
values of N. 

From the data we obtain the final estimate 

U = 0.5867 *0.0025. (34) 
This value for U is less than the value obtained in the absence of an excluded 

half-line with Monte Carlo methods [29,31], exact enumeration [32] and with that 
obtained by considering self-avoiding polygons [33]. However, notice that the determi- 
nations based on Monte Carlo data did not take into account sub-leading non-analytic 
corrections which, if included, as noticed in [33], lower the estimate of U. We do not 

that at the currently available series length ( N  s 21) a strong sub-leading correction 
could explain the discrepancy (see [34]). Notice that our value is in agreement with 
the estimate obtained from the &-expansion [35] and with the experimental value 
u=0.586*0.004 1361. 

L d  -..-l:f-A t- I :..A--.--..+ -- e P r i P l  .rtr.n,4n+:-n mnth..A hilt cIsrnnr+ L S C L  ~"", , , ,C" I" pa."" " J " " ~ C L L " 1 L L  "11 ,,I* I U L L I "  *"L.YY"'OL."L. a.. .,LIB"", ""L ,,U """Y", 

We have also computed the ratios 

AN = ( R i ) I ( R : )  (35) 
BN = ( R i ) / ( R : )  (36) 

which are believed to converge as N + m to constants depending only on the universality 
class. Here again a simple weighted mean gives a very high x2. showing the necessity 
of the inclusion of a correction term, We have thus fitted our data against K + H / N n  
with A ranging within a large interval. The results for A are reported in table 7.  We get 

A=0.1605*0.0011*0.0003 (37) 
B = 0.4826 i 0.0022 * 0.0005. (38) 

t We thank Alan Sokal for suggesting this posaibiliry IO U s  
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Table 7 .  Values of A for various values of A and Nm,n. Errors (two standard deviations, 
95% confidence level) are shown in parentheses. A=mcorresponds to the weighted average. 

"," 

h 100 150 250 500 1000 2000 

m 0.15754(7) 0.15771 (7) 0.15790(7) O. l5823(8 )  O . l 5 8 5 5 ( l O )  O.l5867(l l )  

1.00 0.15839(9) 0.15858(10) O.l5872(11) 0.15893(13) 0.15906(17) 0.159 lO(23) 

0.75 O.l5864(10) O.l5880(11)  O . I5892( l2 )  0.15912(15) 0.15921(21) 0.15921(27) 

0.50 0.159 IO (12) 0.159 25 (14) 0.15934 (15) 0.159 50 (19) 0.159 49 (28) 0.15943 (35) 

0.30 0.16000(18) 0.160 lZ(20) 0.16016(22) 0.16024(29) 0.16004(42) O.l5985(52) 

0.25 0.16044(20) 0.16056(23) 0.16057(26) 0.16061 (34) 0.16030(50) 0.16007(61) 

0.24 0.16055(21) 0.16066(24) 0.16068(27) 0.16070(35) 0.16037(51) 0.16012(63) 

0.23 0.16067(22) 0.16078(24) 0.16079(28) 0.16080(36) 0.16044(53) 0.16018(66) 

0.22 0.16080(23) 0.16091 (25) 0.16091 (29) 0.16091 (83) 0.16052(56) 0.16024(68) 

0.21 0.16095 (23) 0.161 05 (26) 0.161 04(30) 0.161 03 (39) 0.16061 (58) 0.16031 (71) 

0.20 0.161 lO(25)  0.161 20(28) 0.161 19(31) 0.161 16(41) 0.16070(61) 0.16039(74) 

0.19 0.161 28(26) 0.161 37 (29) 0.161 35(33) 0.161 30(43) 0.16081 (64) 0.16048 (78) 

0.18 0.161 47(27) 0.161 56 (30) 0.161 53 (34) 0.161 46(45) 0,16093 (67) 0.16057 (82) 
I:= 10.1 x: = 8.4 2: = 8.2 x: = 8.0 x: = 3.2 x :  = 0.9 

0.17 0.161 69 (28) 0.161 77 (32) 0.161 73 (36) 0.161 64 (48) 0.161 06 (70) 0.16067 (86) 
xi = 10.3 x: = 9.0 x i  = 8.7 x: = 8.4 x: = 3.3 x: = 0.9 

0.10 0.16440(46) 0.16443(52) 0.16425(59) 0.16390(79) 0.16271 (116) 0.16200(142) 

x:=923.8 x i  = 691.5 x i  =479.6 x: = 218.7 x:=55.2 x :  = 22.9 

x;=174.0 x:=87.9 x:=46.4 2: = 9.6 ,y: = 4.5 x: = 4.2 

x:=104.0 x:=48.0 x:=25.5 x: = 4.6 x: = 3.0 x: = 3.0 

x:=43.3 x:=17.0 x:=9.6 x.: = 2.4 x: = 2.4 x :  = 2.0 

x:= 13.9 x: = 5.8 x: = 5.2 x: = 4.5 x: = 2.7 x:=l.3 

x: = 10.8 x: = 5.9 x:=5.8 x: = 5.7 x: = 2.9 x:=1.1 

2: = 10.4 x:=6.I x:=6.l x: = 6.0 x: = 2.9 x : =  1.1 

x i =  10.1 x:=6.3 x:=6.3 x: = 6.3 x: = 3.0 x:=1.1 

x: = 9.9 x: = 6.6 x:=6.6 x: = 6.6 x: = 3.0 ,y:=I. l  

x:=9.8 ,y: = 7.0 x: = 7.0 x.: = 7.0 x:=3.1 x : =  1.0 

x: = 9.8 x:=7.4 x:=7.4 x: = 7.3 x:=3.1 x:=1.0 

x; = 9.9 x:=7.9 x:=7.8 x: = 7.7 x:=3.2 x:=1.0 

I:= 15.0 x:=lS.o 2: = 13.3 x:=l l . s  ,y:=3.7 x :  = 0.7 

Our value for A is in good agreement with the estimates in the bulk (see [29]). For B 
the only previous available estimate comes from an old work by Domb and Hioe [37]. 
Their value ( B  =0.472+0.002) is slightly lower than our prediction; however, the 
discrepancy can be easily explained by the limited number of terms ( N  10) of their 
series. 

Let us mention that a direct fit to the data for A gives the result 

A = 0.20 i 0.09 (39) 

where the error is two standard deviations. We thus have a check on the assumption 
that the first sub-leading correction to mean square-displacement is non-rotational 
invariant. 

Let us discuss the error of the ratios ( A ) / ( B ) .  It is straightforward to show that, if 
A and B are generic observables, the following relation holds: 
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where A and E are the estimators of ( A )  and ( B )  defined as the mean values of the 
time series of A and B (see [29]). 

The term in square brackets is simply given by the variance U ~ ( F , . ~ )  of the estimator 
of FA,B where 

can be treated as a generic observable of our model. Applying the Schwartz inequality 
Icov(A, B)I s u(A)u(B) we get the upper bound 

When A is an ‘odd’ observable (like 2’) and B is an ‘even’ one (like z 2 ) ,  they scale 
rcspec!i.~e!y 2s Ay2h“+a 2nd ,y(2h+’)u *..- W P  . . ~  ..”.., h-xw 

(43) 

u2(B) = (B)*NPs= ~ 2 [ 2 h ” ) + P a  (44) 

u2(A) = ~ 2 ( 2 h + t b + ~ ~  (A)>= ~ 2 ( 2 h h ” t c 7 ’  

where p is the dynamic critical exponent associated with the variable, so that 
u2(A)/(A)‘ >> u 2 ( B ) / ( B ) 2 ,  Icov(A, B)I / (A)(B)  and 

When instead A and B are both even, u ~ ( F ~ , ~ )  is not so simple to handle and there 
is no other choice than to measure it. Our data are reported in table 3. In this case 
the exact factor u2(Fa,Bj given in table 3 is about 8-9 times smaller than the escmge 
obtained by the Schwartz inequaiity, as suggested in [SYj. i h e  reiation (45j ior w’(z’/z’j 
is also well verified. 

5. Random walk with an excluded needle 

We found it also interesting to simulate the same model with an excluded needle for 
simple random walks. In this case the introduction of vacancies should appear as a 
marginal perturbation to the model without constraints and thus the behaviour of 
observables associated with the perturbation is noteworthy, as they can show a non- 
universal behaviour. 

By a direct computation in the continuum limit, the authors of [l] find 

” x  1+0 - ‘”““Inhr [ (InlN)] 

where, of course, Y = f. 
In table 8 we report the raw data from our runs. 
Our data for z cannot, of course, exclude a power-law scaling (a least-squares fit 

produces an exponent close to that of U obtained from SAW), but we can see an increase 
of the effective exponent with Nmi, towards f .  However, a fit of the form ( z ) ~  = 
KN‘/ln N gives an estimate for the exponent v which changes monotonically with 
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Table 8. The results d o u r  runs in d = 3 for random walks with an infinite needle excluded. 
The error ranges are 95% confidence intervals (two standard deviations). 

50 
100 
250 
500 

IO00 
2 000 
4 000 
8 000 

12000 
16 000 

0.709710.0089 
0.91610.013 
1.274 -t 0.021 
1.631-tO.030 
2.107 -t 0.044 
2.720+0.064 
3.584-tO.091 
4.70-tO.18 
5.41 +0.22 
6.04-tO.26 

8.6693-tO.0090 
17.151 *0.020 
42.608*0.050 
84.97 10.10 

169.59-tO.21 
338.81 10.43 
677.09-tO.86 

1353.2e2.4 
2026.5 1 3.7 
2702.214.9 

Table 9. Least-square eStimator Y as a function o f t h e  cut Nmrn,  derived from the data for 
z by a fit o f t h e  form z =  KN'Iln N. The Statistical error A V  is a 95% confidence interval. 

Nmj. 100 250 500 1000 2000 4000 

Y 0.523 0.513 0.510 0.506 0.502 0.489 
x: = 22.4 ,y;=4.3 2: = 2.5 x:= 1.7 x:=  1.5 x i  = 0.3 

A" 0.007 0.009 0.012 0.016 0.022 0.031 

Table IO. Least-square estimator Y as a function of the parameter H and of the cut N,,., 
derived from the data for the radius of gyration by a fit of the form KN" (1  + H/ln N ) .  
The statistical error AV is a 95% confidence interval. Values in bald face indicate the flatness 
region. 

H 100 250 500 1000 2000 4000 8000 

0.00 0.498 56 0.498 95 0.499 14 0.499 25 0.499 23 0.499 I 1  0.498 83 

&=55.9 ,y:=8.6 x:=l.9 x:=O.8 x:=0.7 x:=0.6 x:=0.4 

0.08 0.499 45 0.499 70 0.499 80 0.499 85 0.499 77 0.499 61 0.499 29 

x:=23.2 x;=3.4 x:=1.3 x:=l.l x:=0.9 xi-O.6 x:=0.4 

0. I 1 0.499 77 0.499 97 0,500 05 0.500 07 0.499 97 0.499 79 0.499 44 

x:=I5.1 x i = 2 . 5  x:=1.4 x:=1.4 x:=l.O x$=0.6 x:=0.4 

0.14 0.50009 0.50024 0.50029 0.50029 0.50017 0.49997 0.49964 

x:=9.2 xg=Z.O x:=1.6 x:=1.6 x:=I.l x:=0.6 x:=0.4 

0.17 0.50041 0.50051 0.50053 0.50050 0.50037 0.500 16 0.49978 

x:=5.3 x;=2.0 x:=2.0 x:=1.9 x:=1.2 x:=O.6 x:=O.4 

0.20 0.50073 0.50078 0.50077 0.50072 0.50057 0.50034 0.49996 

x: = 3.4 x: = 2.5 x:=2.4 x:=2.2 x:=l.3 x:=O.6 x:=O.4 

0.23 0.501 04 0.501 05 0.501 01 0.50093 0.50016 0.50052 0.50009 

x:=3.4 &=3.4 x:=3.1 x:=2.S x:=1.4 x:=O.6 x:=O.4 

A" 0.000 20 0,000 25 0,000 32 0.000 41 0.000 56 0.000 19 0.001 31 
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N,;. decreasing strongly from 0.525 towards the expected value o f f  (see table 9), a 
clear signal of the presence of sizeable corrections to simple scaling. 

To conclude, we analysed the radius of gyration. By using the expected logarithmic 
form of the corrections to scaling we can estimate 

0.5003 *0.001010.0002. (48) 

Results are collected in table 10. It appears that the results of [ I ]  are also well confirmed 
for simple random walks. 
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